Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 196» (МБОУ «СОШ № 196»)

Принята на заседании методического (педагогического) совета от «31» августа 2020 г. Протокол № 9

УТВЕРЖДАЮ
Директор МБОУ «СОЦІ № 196»
Д.Б. Ярушин
«31» авруста 2020 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Образовательная робототехника»

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень программы: ознакомительный Возраст обучающихся: 7 – 11 лет Срок реализации: 2 года

> Составитель: педагог дополнительного образования Иванов 3.С.

г. Северск 2020 год

Содержание

№	Название раздела	Стр.
раздела		
1.	Пояснительная записка	3
2.	Общая характеристика курса внеурочной деятельности	3
3.	Описание результатов освоения курса	3
4.	Содержание курса внеурочной деятельности	4
5.	Тематическое планирование с определением видов внеурочной деятельности	4
6.	Учебно-методическое и материально-техническое обеспечение образователь-	5
	ного процесса	

1. Пояснительная записка

Программа составлена в соответствии с Федеральным законом от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации», Приказом Министерства образования и науки РФ от 31 декабря 2015 года № 1576 «О внесении изменений в федеральный государственный образовательный стандарт начального общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 6 октября 2009 г. № 373».

Программа «Начальная робототехника» разработана с учетом требований Федерального государственного образовательного стандарта начального общего образования и планируемых результатов начального общего образования.

Курс рассчитан на 1 год занятий, объем занятий — 34 ч. Программа предполагает как проведение регулярных еженедельных занятий со школьниками (в расчете 1 ч. в неделю), так и возможность организовывать занятия крупными блоками.

Предусмотренные программой занятия могут проводиться как на базе одного отдельно взятого класса, так и в смешанных группах, состоящих из учащихся нескольких классов.

Актуальность программы:

- -необходимость вести пропедевтическую работу в младшей школе в естественнонаучном направлении для создания базы, позволяющей совершить плавный переход к дисциплинам среднего звена (физике, биологии, технологии, информатике, геометрии);
- -востребованность развития широкого кругозора младшего школьника и формирования основ инженерного мышления;
- -отсутствие предмета в школьных программах начального образования, обеспечивающего формирование у обучающихся конструкторских навыков и опыта программирования.

Программа отвечает требованиям направления региональной политики в сфере образования - развитие научно-технического творчества детей младшего школьного возраста.

Роботомехника - это прикладная наука, занимающаяся разработкой и эксплуатацией интеллектуальных автоматизированных технических систем для реализации их в различных сферах человеческой деятельности. Современные робототехнические системы включают в себя микропроцессорные системы управления, системы движения, оснащены развитым сенсорным обеспечением и средствами адаптации к изменяющимся условиям внешней среды. При изучении таких систем широко используется комплект **LEGO Mindstorms Education EV3** — конструктор (набор сопрягаемых деталей и электронных блоков) для создания программируемого робота.

Программа предусматривает использование базовых датчиков и двигателей комплекта **LEGO Mindstorms Education EV3**, а также изучение основ автономного программирования и программирования в графической среде **EV3-G**.

Цель программы: формирование интереса к техническим видам творчества, развитие конструктивного мышления средствами робототехники.

Задачи программы

Обучающие:

- ознакомление с комплектом LEGO MINDSTORMS Education EV3;
- ознакомление с основами автономного программирования;
- ознакомление со средой программирования LEGO MINDSTORMS Education EV3-G;
- получение навыков работы с датчиками и двигателями комплекта;
- получение навыков программирования;
- развитие навыков решения базовых задач робототехники.

Развивающие:

- развитие конструкторских навыков;
- развитие логического мышления;
- развитие пространственного воображения.

Воспитательные:

- воспитание у детей интереса к техническим видам творчества;
- развитие коммуникативной компетенции: навыков сотрудничества в коллективе, малой группе (в паре), участия в беседе, обсуждении;
- -развитие социально-трудовой компетенции: воспитание трудолюбия, самостоятельности, умения доводить начатое дело до конца;

- формирование и развитие информационной компетенции: навыков работы с различными источниками информации, умения самостоятельно искать, извлекать и отбирать необходимую для решения учебных задач информацию.

В процессе обучения используются разнообразные методы обучения.

Традиционные:

- объяснительно-иллюстративный метод (лекция, рассказ, работа с литературой и т.п.);
- репродуктивный метод;
- метод проблемного изложения;
- частично-поисковый (или эвристический) метод;
- исследовательский метод.

Современные:

- метод проектов:
- метод обучения в сотрудничестве;
- метод портфолио;
- метод взаимообучения.

Курс робототехники преследует цель ознакомления и развития у обучающихся навыков работы с компьютером и робототехническими системами, овладение навыками начального технического конструирования. Для достижения поставленной на цели на первой ступени обучения робототехники необходимо решить следующие задачи:

- развивать образное, техническое мышление;
- развивать мелкую моторику;
- развивать творческие способности и логические мышление детей.

2. Планируемые личностные и метапредметные результаты освоения обучающимися программы курса

- 1. Коммуникативные универсальные учебные действия: формировать умение слушать и понимать других; формировать и отрабатывать умение согласованно работать в группах и коллективе; формировать умение строить речевое высказывание в соответствии с поставленными задачами.
- 2. Познавательные универсальные учебные действия: формировать умение извлекать информацию из текста и иллюстрации; формировать умения на основе анализа рисункасхемы делать выводы.
- 3. Регулятивные универсальные учебные действия: формировать умение оценивать учебные действия в соответствии с поставленной задачей; формировать умение составлять план действия на уроке с помощью учителя; формировать умение мобильно перестраивать свою работу в соответствии с полученными данными.
- 4. Личностные универсальные учебные действия: формировать учебную мотивацию, осознанность учения и личной ответственности, формировать эмоциональное отношение к учебной деятельности и общее представление о моральных нормах поведения.

3. Ожидаемые предметные результаты реализации программы

Первый уровень

у обучающихся будут сформированы:

- основные понятия робототехники;
- основы алгоритмизации;
- умения автономного программирования;
- знания среды 3D моделирования Lego Digital Designer;
- основы программирования в графической среде EV3-G;
- умения подключать и задействовать датчики и двигатели;
- навыки работы со схемами.

Второй уровень

обучающиеся получат возможность научиться:

- классифицировать роботов;
- составлять алгоритмические блок-схемы для решения задач;
- использовать датчики и двигатели в классических задачах.

Третий уровень

обучающиеся получат возможность научиться:

- программировать в графической среде EV3-G;
- использовать датчики и двигатели в широком круге задач;
- проходить все этапы проектной деятельности, создавать творческие работы.

4. Содержание учебного предмета

Программа включает 35 аудиторных занятий.

Раздел 1. Зубчатые передачи.

Теоретические основы расчета и проектирования зубчатой передачи. Сборка робота с понижающей зубчатой передачей без использования схемы.

Раздел 2. Сенсоры роботов.

Сенсор «Касание». Принципы работы, применение и возможности сенсора.

Раздел 3. Проектирование роботов для соревнований. Средняя группа.

Изучение соревнований средней возрастной группы. Сборка роботов и написание алгоритмов без использование шаблонов и схем.

Раздел 4. Повторение

3.6 Робот «Сложная черная линия».

5. Тематическое планирование с определением видов внеурочной деятельности

Содержание курса Характеристика деятельности учащихся Раздел 1 Зубчатые передачи Коммуникативная: умение слушать и 1.1 Понятие зубчатой передачи. Обоснованность понимать других, умение строить реиспользования. Определение передаточного чевое высказывание в соответствии с числа. поставленными задачами. Познава-1.2 Сборка робота с зубчатой передачей. тельные: умение извлекать информа-Раздел 2 Сенсоры роботов цию из текста и иллюстраций; умение 2.1 Сенсор «Касание». Принципы работы, примена основе анализа рисунка- схемы денение и возможности сенсора. Примеры роботов. 2.2 Установка сенсора «Касание» на модель ролать выводы бота. Коммуникативные: умение согласо-Раздел 3 Проектирование роботов для соревванно работать в группах и коллекнований. Средняя группа тиве, умение слушать и понимать дру-3.1 Соревнование «Гонка». Правила соревновагих, умение строить речевое высказыний. Выбор алгоритма управления. вание в соответствии с поставлен-3.2 Программа «Гонка». ными задачами. Познавательные: 3.3 Робот «Биатлон». умение извлекать информацию из тек-3.4 Соревнование «Биатлон». Правила соревноваста и иллюстрации, умение на основе ний. Выбор алгоритма управления. анализа рисунка- схемы делать вы-3.5 Программа «Биатлон». воды. Регулятивные: умение оцени-

вать учебные действия в соответствии

с поставленной задачей, умение со-

- 3.7 Соревнование «Сложная черная линия». Правила соревнований. Выбор алгоритма управления..
- 3.8 Программа «Сложная черная линия».
- 3.9 Соревнование «Делянка». Правила соревнований. Выбор алгоритма управления.
- 3.10 Программа «Делянка».

Раздел 4 Повторение

4.1 Повторение пройденного материала.

ставлять план действий на уроке с помощью учителя, умение мобильно перестраивать свою работу в соответствии с полученными данными. Личностные: эмоциональное отношение к учебной деятельности и общее представление о моральных нормах поведения.

6. Учебно-методическое и материально-техническое обеспечение образовательного процесса

Технические средства обучения:

- 1. наборы Lego Mindstorms EV3;
- 2. компьютеры с OC Windows 10 и графической средой Lego Mindstorms EV3-G
- 3. мультимедиа проектор;
- 4. интерактивная доска;
- 5. поля для соревнований.

Экранно-звуковые пособия:

1. видеофильмы и презентации.

электронный учебник

7 Календарно-тематическое планирование

No	Дата	Тема	Кол-во часов		
			Teop.	Прак.	Всего
1.		Вводное занятие. Первичный инструктаж. Цели	1	0	1
		и задачи образовательной программы.			
Раздел	1 1 Зубча	тые передачи			
2.		Понятие зубчатой передачи. Обоснованность	0,5	0,5	1
		использования. Определение передаточного			
		числа.			
3.		Сборка робота с зубчатой передачей.	0	1	1
		ПР: Сборка робота с понижающей зубчатой пе-			
		редачей без использования схемы.			
Раздел	12 Сенс	оры роботов			
3.		Сенсор «Касание». Принципы работы, примене-	1	1	2
		ние и возможности сенсора. Примеры роботов.			
4.		Установка сенсора «Касание» на модель робота.	0	1	1
		ПР: Сборка робота.			
Раздел	13 Прое	ктирование роботов для соревнований средняя і	группа		
5.		Соревнование «Гонка». Правила соревнований.	0,5	0,5	1
		Выбор алгоритма управления.			
6.		Программа «Гонка».	1	1	2
		ПР: Составление программы для управления ро-			
		ботом в соревновании «Гонка».			
7.		Программа «Гонка».	1	1	2

	ПР: Отладка параметров программы для управ-			
0	ления роботом в соревновании «Гонка».	1	1	2
8.	Робот «Биатлон».	1	1	2
	ПР: Конструирование робота для соревнования			
0	«Биатлон».	0.5	0.5	1
9.	Соревнование «Биатлон». Правила соревнова-	0,5	0,5	1
1.0	ний. Выбор алгоритма управления.			
10.	Программа «Биатлон».	1	1	2
	ПР: Составление программы для управления ро-			
	ботом в соревновании «Биатлон».			
11.	Программа «Биатлон».	1	1	2
	ПР: Отладка параметров программы для управ-			
	ления роботом в соревновании «Биатлон».			
12.	Робот «Сложная черная линия».	1	1	2
	ПР: Конструирование робота для соревнования			
	«Сложная черная линия».			
13.	Соревнование «Сложная черная линия». Пра-	0,5	0,5	1
	вила соревнований. Выбор алгоритма управле-		·	
	ния.			
14.	Программа «Сложная черная линия».	1	1	2
	ПР: Составление программы для управления ро-			
	ботом в соревновании «Сложная черная линия».			
15.	Программа «Сложная черная линия».	1	1	2
	ПР: Отладка параметров программы для управ-			
	ления роботом в соревновании «Сложная черная			
	линия».			
16.	Соревнование «Делянка». Правила соревнова-	0,5	0,5	1
10.	ний. Выбор алгоритма управления.	0,0	3,5	
17.	Программа «Делянка».	1	1	2
1,.	ПР: Составление программы для управления ро-	•	1	_
	ботом в соревновании «Делянка».			
18.	Программа «Делянка».	1	1	2
10.	ПР: Отладка параметров программы для управ-	1	•	_
	ления роботом в соревновании «Делянка».			
Разлеп 4 1	Повторение			1
<u> 19.</u>	Повторение пройденного материала.	0	4	4
17,	ИТОГО:	<u> </u>		34
	MIOLO.			J 4

8. Учебно-методическое обеспечение:

Литература для педагогов

- 1. Литвиненко В.М., Аксёнов М.В. ЛЕГО МАСТЕР.- Санкт-Петербург: Издательство «Кристалл», 1999 г.
- 2. Мельникова О.В. Лего-конструирование. 5-10 лет. Программа, занятия. 32 конструкторские модели. Презентация в электронном приложении / О.В. Мельникова. Волгоград : Учитель.

Литература для обучающихся

- 1. Комарова Л. Г. «Строим из LEGO» (моделирование логических отношений и объектов реального мира средствами конструктора LEGO). М.; «ЛИНКА ПРЕСС», 2001.
- 2. Каталог образовательных наборов на базе конструкторов LEGO DACTA. М., 1996. 40 с.
- 3. Комарова, Л.Г. Строим из LEGO / Л.Г. Комарова. М., 2001. 88 с.